TEORIAS E FILOSOFIAS DE GRACELI 221
- Gerar link
- X
- Outros aplicativos
Calor latente no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
domingo, 25 de agosto de 2019
Calor latente, também chamado de calor de formação,[1] é a grandeza física relacionada à quantidade de calor que uma unidade de massa de determinada substância deve receber ou ceder para mudar de fase, ou seja, passar do sólido para o líquido, do líquido para o gasoso e vice-versa. Durante a mudança de fase a temperatura da substância não varia, mas seu estado de agregação molecular se modifica.
O calor latente pode ter valores tanto positivos quanto negativos. É positivo se a substância estiver recebendo calor e negativo se estiver cedendo calor. No Sistema Internacional de Unidades (SI), a unidade é J/kg (joule por quilograma). Outra unidade usual é caloria por grama (cal/g). A unidade caloria tende a desaparecer à medida que o SI vá sendo implantado pelos países que o aprovaram.
História[editar | editar código-fonte]
A palavra latente vem do latim latēns que significa oculto.[2] O termo foi usado pela primeira vez em 1761 por Joseph Black que deduziu que ao doar calor para um sistema água/gelo não causa o aumento de sua temperatura, e sim um aumento na quantidade de água na mistura. Em seguida Black observou que adicionar calor à água em ebulição também não causava um aumento na temperatura, e sim um aumento do vapor no sistema água/vapor. A partir dessas observações, Black concluiu que o calor aplicado deveria ter se combinado com as partículas do gelo e da água fervente e se tornado latente. Sua teoria marca o início da Termodinâmica.[3] Ele também mostrou que diferentes substâncias possuem diferentes calor específico.
Expressão matemática[editar | editar código-fonte]
Para calcular o calor latente de uma substância, basta dividir a quantidade de calor Q que a substância precisa ganhar ou perder para mudar de fase pela massa m da mesma.
- x
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Temos que L é o calor latente, a quantidade de energia necessária para que 1g da amostra mude de fase, e pode ser representadas pelas unidades kJ/kg ou cal/g.
Quando a mudança é da fase líquida para a fase gasosa (amostra absorve calor), o calor latente é chamado de Calor de Ebulição/Vaporização (Lv), e seu valor é igual em módulo, porém com o sinal oposto (amostra cede calor) do Calor de Condensação (Lc).
Quando a mudança de fase se dá de sólida para líquida (amostra absorve calor), o calor latente é chamado de Calor de Fusão, e seu valor é igual em módulo e de sinal oposto ao do Calor de Solidificação (amostra cede calor).
Tabela de calores latentes[editar | editar código-fonte]
A tabela abaixo apresenta alguns elementos e seus respectivos calor latentes e fusão e ebulição, assim como a temperatura de transição de fase.[1]
Substância | Ponto de Fusão (K) | Calor Latente de Fusão (kJ/kg) | Ponto de Ebulição (K) | Calor Latente de Vaporização (kJ/kg) |
---|---|---|---|---|
Hidrogênio | 14,0 | 58,0 | 20,3 | 455 |
Oxigênio | 54,8 | 13,9 | 90,2 | 213 |
Mercúrio | 234 | 11,4 | 630 | 296 |
Água | 273 | 333 | 373 | 2256 |
Chumbo | 601 | 23,2 | 2017 | 858 |
Prata | 1235 | 105 | 2323 | 2326 |
Cobre | 1356 | 207 | 2868 | 4730 |
x
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Calor latente da água[editar | editar código-fonte]
Calor latente de condensação[editar | editar código-fonte]
O calor latente de condensação da água, no intervalo de temperatura entre -40°C e 40°C, pode ser aproximado pela função cúbica abaixo:
[4]
- x
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde a temperatura
é usada em °C.
Calor latente de sublimação[editar | editar código-fonte]
No mesmo intervalo de temperatura, o calor latente de sublimação pode ser aproximado pela função quadrática:
[4]
- x
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- A calorimetria de titulação isotérmica (ITC) é uma técnica biofísica usada para determinar parâmetros termodinâmicos de interações bioquímicas. É frequentemente usada para estudar a ligação de pequenas moléculas (como, por exemplo, compostos medicinais) a grandes macromoléculas (proteínas, DNA etc.).
Medições termodinâmicas[editar | editar código-fonte]
ITC é uma técnica quantitativa que pode medir diretamente a afinidade de ligação (Ka), mudanças na entalpia (ΔH), e estequiometria da ligação (n) da interação entre duas ou mais moléculas em solução. Destas medições iniciais, mudanças na energia livre de Gibbs (ΔG), e mudanças na entropia (ΔS), podem ser determinadas usando a relação:- ΔG = -RTlnK = ΔH-TΔS
- x
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Calorimetria no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
domingo, 25 de agosto de 2019
Em termodinâmica, calorimetria é um ramo da física que estuda as trocas de energia entre corpos ou sistemas quando essas trocas se dão na forma de calor.[1] Calor significa uma transferência de energia térmica de um sistema para outro, ou seja: podemos dizer que um corpo recebe calor, mas não que ele possui calor.A calorimetria é uma ramificação da termologia que analisa os problemas relacionados à troca de calor em sistemas de temperaturas diversas. Como exemplo, considere a situação em que dois corpos A e B possuem temperaturas TA e TB, sendo TA > TB. Ao serem colocados em contato térmico, no interior de um recipiente termicamente isolado do meio externo, pode-se observar que após um tempo suficientemente longo, os corpos apresentarão a mesma temperatura, i.e., TA = TB, atingindo portanto e equilíbrio térmico. Em um sistema termicamente isolado, a temperatura de equilíbrio entre os corpos em contato será sempre intermediária entre a maior e a menor temperatura presente originalmente no sistema.[2][3]Terminologia[editar | editar código-fonte]
Calor - Energia térmica que é transferida de um corpo para outro devido à diferença de temperatura entre eles. O sentido desta transferência é sempre da região (ou corpo) de maior para a/o de menor temperatura. Uma vez que o calor é uma energia em processo de alteração, todo corpo pode receber ou doar calor, que normalmente é medido em calorias; porém, o calor é uma grandeza equivalente à energia mecânica e, portanto, pode ser medido em joules, de acordo com o S.I.Calor sensível - É o calor absorvido ou cedido por um corpo e que tem como consequência a variação da energia (cinética) interna de um corpo, a qual é observada diretamente na temperatura do corpo em questão. O nome "calor sensível" faz referência ao fato de que tais trocas podem ser observadas através da variação de temperatura, nunca incorrendo em transição de fase de primeira ordem (isto é, não provocando mudança de estado, sólido-líquido-gasoso-plasmático).Calor latente - É o calor cedido ou absorvido por um corpo e que tem como consequência a variação da energia potencial intermolecular. Ao absorver ou distribuir calor latente, um corpo mantém sua temperatura constante, porém passa por mudança de estado físico (diferente do calor sensível).Capacidade térmica (C) - É a razão (ou relação) entre a quantidade de calor e a variação de temperatura num sistema.[1]. A capacidade térmica de um sistema (com dois ou mais corpos), corresponde à soma dos valores individuais da capacidade térmica de cada corpo.Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- C: capacidade térmica do corpo.
- Q: quantidade de calor trocada pelo corpo.
: variação de temperatura do corpo.
A unidade de capacidade térmica no S.I. é o J/K (joule por kelvin).Calor específico (c): É a capacidade específica de uma substância de mudar sua temperatura ao receber ou liberar calor para cada massa unitária que esta vier a incluir. Isto quer dizer que a Capacidade Térmica de um corpo é dada pelo Calor Específico (c) da substância que o compõe e pela sua massa; em outras palavras: quanto menor o calor específico de uma substância, menor será a quantidade de calor necessária para elevar a sua temperatura. O calor específico depende do estado de agregação do sistema, sendo maior no estado líquido do que no estado sólido.A unidade usual para determinar o calor específico ée no S.I. é o
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A relação entre capacidade térmica (C) e massa (m) é expressa porXx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- c representa o calor específico de um dado material.
- C representa a capacidade térmica da amostra deste material.
- M representa a massa da amostra deste material.
Uma caloria (1 cal): é a quantidade de calor necessária para aquecer, sob pressão normal, 1,0 g de água de 14,5 °C a 15,5 °C.[3]Função Fundamental da Calorimetria[editar | editar código-fonte]
A equação fundamental da calorimetria é definida a partir de duas grandezas importantíssimas da Termologia, que são a capacidade térmica e o calor específico.Quantidade de Calor Sensível[editar | editar código-fonte]
Ocorre mudança de temperatura nas substâncias SEM mudança de estado.Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
(ou, alternativamente) Q = m . c . ΔTQ representa a variação no calor sensível; m é a massa; c é o calor específico do material, e ΔT é a variação de temperatura durante o experimento.- Q>0 (ou seja: o corpo recebe calor)
(o corpo se aquece).
- Q<0 (ou seja: o corpo cede calor)
(o corpo se esfria).
Quantidade de Calor Latente[editar | editar código-fonte]
Ocorre mudança de estado físico nas substâncias.Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Princípios da Calorimetria e determinação do calor específico[editar | editar código-fonte]
Princípios da Calorimetria[editar | editar código-fonte]
- Princípios de transformações inversas: a quantidade de calor que um corpo recebe é igual, em módulo, à quantidade de calor que um corpo cede ao voltar, pelo mesmo processo, à situação inicial.
- Princípio do Equilíbrio Térmico: quando vários corpos inicialmente a temperaturas diferentes trocam calor entre si, e só entre si, observamos que alguns perdem enquanto outros recebem calor, de tal maneira que decorrido um certo tempo, todos estacionam numa mesma temperatura, chamada temperatura de equilíbrio térmico.
- Princípio da Igualdade das Trocas de Calor: quando vários corpos trocam calor apenas entre si, a soma das quantidades de calor que alguns cedem é igual, em módulo, à soma das quantidades de calor que os restantes recebem.
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Determinação do Calor Específico[editar | editar código-fonte]
Uma técnica para medir o calor específico consiste em aquecer uma amostra de alguma substância até uma temperatura conhecida que podemos chamar de Tx, colocando-a imersa em um recipiente contendo água de massa e temperatura conhecidas, sendo Ta < Tx, e medindo a temperatura da água depois que o equilíbrio é alcançado. Essa técnica é chamada de calorimetria, e os aparelhos nos quais ocorre essa transferência de energia são chamados calorímetros. A figura ao lado nos mostra a transferência de energia por calor resultante da parte do sistema em alta temperatura para a parte em baixa temperatura. Se o sistema (amostra + água) é isolado, o princípio de conservação de energia exige que a quantidade de energia Qquente que deixa a amostra de calor específico desconhecido seja igual à quantidade de energia Qfria que entra na água. A conservação de energia nos permite escrever a representação matemática dessa afirmação de energia como:X
x TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X- V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... X =
ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... = xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Suponha que mx seja a massa de uma amostra de alguma substância cujo calor específico queremos determinar. Vamos chamar seu calor específico de cx e sua temperatura inicial de Tx. Do mesmo modo, ma, ca e Ta representam valores correspondentes para a água. Se Tf é a temperatura final depois que o sistema chega ao equilíbrio. A equação da calorimetria Q = mc∆t nos mostra que a transferência de energia para a água é maca(Tf-Ta), que é positivo, porque Tf >Ta, e que a transferência de energia para a amostra de calor específico desconhecido é mxcx(Tf-Tx), que é negativo. Substituindo essas expressões na equação acima, temos:X
x TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X- V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... X =
ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... = xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Essa equação pode ser resolvida para determinar o calor específico cx para qualquer substância desejada.[4]Unidades usuais no SI[editar | editar código-fonte]
- C= capacidade térmica (cal/°C ou J/K)
- Q= quantidade de calor (cal ou J)
- ∆T ou ∆Θ= variação de temperatura (°C ou K)
- c= calor específico (cal/g°C ou J/kg K)
- M= massa (g ou kg)
- T= temperatura (°C ou K)
Interesse Especial da Calorimetria na Termodinâmica: Relações entre Quantidades Calorimétricas Clássicas[editar | editar código-fonte]
Esta página precisa ser reciclada de acordo com o livro de estilo (desde fevereiro de 2017).
Sinta-se livre para editá-la para que esta possa atingir um nível de qualidade superior.Relação de Calor Latente com o Volume e a Equação de Estado[editar | editar código-fonte]
A quantidadeé o calor latente em relação ao volume e pertence a calorimetria clássica. Contabiliza a ocorrência de transferência de energia por trabalho em um processo no qual o calor é também transferido. A quantidade, no entanto, foi considerada antes da relação entre calor e transferências de trabalho. Este fato foi esclarecido pela invenção da termodinâmica. Para a termodinâmica, a quantidade de calorimétrica clássica é revelada como estando fortemente ligada à equação de estado do material calorimétrico
. Desde que a temperatura T seja medida na escala termodinâmica absoluta, a relação é expressa pela fórmula abaixo, em função de V e T[5].
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Diferença entre Calores Específicos[editar | editar código-fonte]
Com o avanço da termodinâmica, tornou-se possível provar a relação:Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A partir disto então, o raciocínio matemático e termodinâmico leva a outra relação entre as quantidades de calorimétricas clássicas. A diferença de calor específico é dada por:Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Cálculo Básico do Calor na Calorimetria[editar | editar código-fonte]
Capacidade térmica[editar | editar código-fonte]
Para entendermos o que é a capacidade térmica, antes é necessário sabermos o que é o calor específico. Na definição, o calor específico de um corpo é quanto de calor deve ser fornecido a uma substância para que um grama se aqueça em um grau Celsius.A capacidade térmica de um corpo é o produto entre a massa de uma substância e seu calor específico. É também uma forma de saber quanto de calor uma substância pode armazenar em uma troca térmica, ou qual a ineficiência de um corpo em trocar energia com o meio em que está.Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Assim materiais cuja capacidade térmica ou cuja massa sejam muito grandes são usualmente conhecidos como reservatórios térmicos, já que, com o aumento dessas propriedades a quantidade de calor necessária para aumentar em um grau um grama desse sistema ou substância cresce em sentido inversamente proporcional.Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Equação do trabalho em função do volume e pressão[editar | editar código-fonte]
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Variação de energia[editar | editar código-fonte]
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Casos com equação diferencial de estado para um componente do corpo[editar | editar código-fonte]
Cálculo básico para o volume constante (Cv)[editar | editar código-fonte]
Transformação isocórica[editar | editar código-fonte]
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Cálculo clássico de calor para pressão constante (Cp)[editar | editar código-fonte]
Transformação isobárica.[editar | editar código-fonte]
Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Cálculo de Capacidade Térmica para um gás ideal[editar | editar código-fonte]
para um ciclo de trabalho fechado de transformações isobárica, isocórica e isotérmica. A variação de energia interna de um sistema é um processo reversível e constante, e portanto não muda com o tempo, e assim sendo:Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Podemos representar essas duas expressões através de uma única, que será:Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x[EQUAÇÃO DE DIRAC].
+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Mas sabemos que numa transformação isocórica a variação de volume é igual a zero, logo temos que:Xx
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS. Energia livre de Gibbs no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
sábado, 24 de agosto de 2019
Em termodinâmica, a energia livre de Gibbs é uma grandeza que busca medir a totalidade da energia atrelada a um sistema termodinâmico disponível para execução de trabalho “útil” - trabalho atrelado ao movimento em máquinas térmicas, a exemplo. É particularmente útil na compreensão e descrição de processos simultaneamente isotérmicos e isobáricos: em transformações à temperatura e pressão constantes a variação da energia livre de Gibbs encontra-se diretamente associada ao trabalho útil realizado pelo sistema - em princípio facilmente mensurável a partir da determinação da variação das energias cinéticas associadas. Tem este nome devido a Josiah Willard Gibbs, que realizou grandes estudos nessa área.Assim como ocorre para os demais potenciais termodinâmicos, não são os valores absolutos da energia livre de Gibbs em si mas as variações na referida energia que retêm importâncias as mais significativas tanto em questões práticas como teóricas. A variação da energia livre de Gibbs, determinável via diferença entre as energias associadas respectivamente ao estado final e inicial do sistema dado ser a energia em questão uma função de estado- em notório contraste com o que verifica-se experimentalmente para os valores absolutos da referida energia - é facilmente mensurável em experimentos práticos mediante adequadas determinações acerca do trabalho útil realizado pelo sistema nos processos em questão. Raras e praticamente difíceis são as situações que exigem considerações explícitas acerca dos valores absolutos de tais energias.[Ref. 1]
Definição[editar | editar código-fonte]
A totalidade de energia associada a um sistema é mensurada não pela energia interna do sistema - parcela que avalia apenas a totalidade das energias diretamente atreladas aos componentes integrantes do sistema - mas sim pela entalpia do sistema, grandeza que considera não apenas as energias associadas aos componentes do sistema como também as energias indiretamente atreladas ao sistema em virtude das relações que este estabelece com sua vizinhança - parcela última reconhecível como a energia passível de ser recebida da vizinhança mediante a execução de trabalho dadas as variações de volume do sistema frente à pressão imposta pela vizinhança. Dada a segunda lei da termodinâmica, da energia total atrelada ao sistema, uma parcela desta, especificamente uma parcela da energia interna do sistema - por encontrar-se associada à entropia do sistema - nunca é passível de ser transformada em trabalho; tal parcela é segundo a termodinâmica determinável pelo produto entre a temperatura T e a entropia S do sistema. Decorre que a totalidade de energia atrelada a um sistema efetivamente disponível para a realização de trabalho útil - definida como a energia livre de Gibbs - é calculável pela diferença entre a energia total associada ao sistema - sua entalpia - e a parcela de energia indisponível à realização de trabalho dada sua associação com a entropia do sistema. A energia livre de Gibbs G é matematicamente pois definida como:x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Se um dado sistema termodinâmico evolui de um estado inicial "i" para outro estado final "f" através de transformações isotérmicas e isobáricas reversíveis - situação em que por definição não há variação de entropia do sistema mais reservatórios (térmico ou bárico) de forma que a soma U-TS para o sistema (e não apenas o produto TS em si) se conserva em presença de calor entre sistema e vizinhanças - a variação da energia livre de Gibbs () é igual à totalidade de trabalho realizado pelo sistema no processo menos a parcela de trabalho realizada pelo sistema sobre sua vizinhança em virtude da variação de seu volume frente à pressão P imposta pelo ambiente, ou seja, corresponde ao trabalho efetivamente "útil" realizado pelo sistema no processo. A variação da energia livre de Gibbs neste caso iguala-se à variação de entalpia experimentada pelo sistema durante as transformações - reversíveis - que conectam os dois estados em questão [Ref. 3].
Conforme definida, a energia livre de Gibbs é útil na análise de transformações experimentadas por sistemas quando estes encontram-se em contato com um reservatório térmico - o que garante a manutenção da temperatura nas transformações - e em contato com um reservatório mecânico - o que garante a manutenção da pressão ao longo das transformações. Ressalva-se contudo que para todos os fins práticos e talvez teóricos - de forma similar ao que verifica-se para a entalpia, energia interna e demais potenciais termodinâmicos - de considerável relevância têm-se não os valores absolutos das referidas energias mas sim as variações destas energias. Ao passo que as determinações dos respectivos valores absolutos são experimentalmente extremamente complicados - e por tal raramente feitos - as determinações das variações nestas energias são contudo experimentalmente bem acessíveis.A energia de Gibbs pode ser um fator determinante no cálculo de outras grandezas, como a voltagem de uma célula eletroquímica e a constante de equilíbrio de uma reação reversível.A energia livre foi inicialmente proposta na década de 1870 pelo físico e matemático Willard Gibbs.Espontaneidade em processos naturais[editar | editar código-fonte]
A composição de um sistema tende a ser modificada até que o equilíbrio deste sistema seja atingido. Neste ponto, a concentração dos reagentes e produtos é a mesma, e portanto, as reações de formação dos produtos e reagentes ocorrem na mesma proporção, o que é expresso pela constante de equilíbrio da reação (Keq). Quando o sistema não está em equilíbrio, existe uma tendência de atingí-lo, o que move a reação em determinado sentido e cuja magnitude pode ser expressa pela variação da energia livre de Gibbs (ΔG) para a reação. [1]Sob condições padrão, onde a temperatura é de 298 K (25 oC), os reagentes e produtos estão presentes em concentrações iniciais de 1 M (ou, para gases, as pressões parciais de 101,3 quilopascais ou 1 atm), o pH é igual a 7 e em solução aquosa (a concentração da água pura é de 55,5 M), definem-se constantes padrão transformadas (ΔG’oe K’eq), que diferem das constantes padrão utilizadas em condições não biológicas(ΔGo e Keq). A relação entre a variação da energia livre de Gibbs e a constante de equilíbrio de uma dada reação é definida por:ΔG’o = -RT ln K’eqx
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Para definir espontaneidade, parte-se do princípio que as reações como um todo tendem a proceder no sentido que diminua a energia livre de Gibbs do sistema. Definindo-se ΔG’o como a energia livre dos produtos menos a dos reagentes, quando ΔG’o é negativa pode-se dizer que a energia livre dos produtos é menor que a dos reagentes. Neste caso, a reação tende a proceder no sentido direto, de formação dos produtos, onde o ΔG’o é negativo (sob as condições padrão mencionadas).A variação da energia livre padrão, ΔG’o, é uma constante, característica para cada reação, assim como K’eq. Em condições reais, temos variações de temperatura e concentrações de produtos e reagentes, e determinamos a variação de energia livre como:ΔG = ΔG’o + RT ln ([produtos]/[reagentes])É importante mencionar que a variação de energia livre para uma reação é independente do caminho entre reagentes e produtos, não sendo alterada por catalisadores, por exemplo. Em reações sequenciais, embora a K’eq seja multiplicativa, o ΔG’o é aditivo. Esta propriedade nos permite entender como reações endergônicas (termodinamicamente desfavoráveis) podem acontecer no sentido direto biologicamente, através do acoplamento com reações favoráveis. Por exemplo, a reação de utilização da glicose:Glicose + Pi ----> Glicose 6-fosfato + H2O ΔG’o = 13,8 kJ/molSob condições padrão, o ΔG’o positivo indica que esta reação não é favorável no sentido de formação da glicose 6-fosfato. Para que ela aconteça é necessário o seu acoplamento a uma reação exergônica, no caso à hidrólise do ATP a ADP e Pi:(1) Glicose + Pi ----> Glicose 6-fosfato + H2O ΔG’o = 13,8 kJ/mol(2) ATP + H2O ---> ADP + Pi ΔG’o = -30,5 kJ/mol(1) + (2): ATP + glicose ---> ADP + glicose 6-fosfato ΔG’o = 13,8 + (-30,5) = -16,7 kJ/molA soma das duas reações torna o conjunto termodinamicamente favorável, fazendo com que a primeira reação ocorra nessas condições.Potenciais termodinâmicos[editar | editar código-fonte]
A energia de Gibbs é, conforme visto, definida como:- x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Em unidades SI, G é medido em joules, H (entalpia) também em joules, T (temperatura) em Kelvin e S (entropia) em joules por Kelvin. Cada quantidade nas equações pode ser dividida pela quantidade de material (mol) para formar a energia de Gibbs molar.Em acordo com o estabelecido pela termodinâmica, uma vez conhecida a equação fundamental que exprime a energia interna de um sistema em função das grandezas termodinâmicas adequadas, é possível inferir-se as propriedades do sistema ao longo de processos termodinâmicos, e por lógica deve ser possível, a partir desta, determinar-se a energia livre de Gibbs atrelada ao sistema. A ferramenta matemática necessária é a Transformada de Legendre. Quando aplicada corretamente à equação fundamental que define a energia internado sistema, tem-se que a energia livre de Gibbs
deve figurar, entre outras se houver, em função do número de partículas N, e da grandezas intensivas temperatura absoluta T e pressão P, devendo as correspondentes extensivas conjugadas - a entropia S e o volume V - serem substituídas em
mediante [Ref. 1]:
x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
e.
x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Quando expressa em função da Temperatura T, do número de elementos N e da pressão P - para o caso de sistemas termodinâmicos mais simples - a Energia Livre de Gibbsé, assim como o são as respectivas Transformadas de Legendre, a saber a Energia livre de Helmholtz
, a Entalpia
e a Energia Interna
, uma equação fundamental para os sistemas termodinâmicos, sendo então possível, a partir desta e de todo o formalismo matemático inerente à termodinâmica, obter-se qualquer informação física relevante para o sistema a qual esta encontre-se vinculada. Contudo, se expressa em função de outras grandezas que não as citadas, tal equação reduz-se a uma equação de estado. Equações de estado não retêm em si todas as informações acerca do sistema, sendo necessário o conjunto completo de todas as equações de estado do sistema para recuperar-se a totalidade de informações citada - de forma a tornar-se possível, a partir das equações de estado, a determinação de uma, e por tal - via transformada de Legendre adequada - de qualquer das demais equações fundamentais do sistema [Ref. 1].
A tabela abaixo apresenta um resumo dos passos a serem seguidos a fim de se executar corretamente a transformada a fim de obter-se a energia de Gibbs a partir da expressão para a energia interna - ou vice-versa [Ref. 1].Transformadas de Legendre na Termodinâmica - Energia Livre de Gibbs, partindo-se de :
Determinar ,
e
Eliminação de U, V e S fornece: Energia Livre de Gibbs G
x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Transformadas de Legendre em Termodinâmica - Energia Livre de Gibbs - Para chegar-se a :
;
Determinar ;
;
Eliminação de T, P e G fornece: Energia Interna U
x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A energia livre de Gibbs pode ser obtida também através da Transformada de Legendre diretamente aplicada sobre a Entalpia, neste caso devendo-se fazer apenas a substitiuição da variável extensiva S pela correspondente intensiva T uma vez que, para obter-se a entalpia, a grandeza V já foi substituída pela correspondente intensiva P.
Exemplo
SISTEMA GRACELI - ELÉTRON-TERMO-ISOTÓPICO-NUCLEAR-FENOMÊNICO-DECADIMENSIONAL QUÃNTICO
x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.A equação propriamente dita é dada por:,
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linearé a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
Cada α é um operador linear que se aplica à função de onda. Escritos como matrizes 4×4, são conhecidos como matrizes de Dirac. Uma das escolhas possíveis de matrizes é a seguinte:Assinar: Postagens (Atom)Onda de matéria no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
quarta-feira, 21 de agosto de 2019
Em mecânica quântica, uma onda de matéria ou onda de De Broglie é a onda (dualidade onda-partícula) de matéria. As relações de De Broglie mostram que o comprimento de onda é inversamente proporcional ao momento linear da partícula e que a frequência é diretamente proporcional à energia cinética da partícula. O comprimento de onda de matéria é também chamado comprimento de onda de De Broglie.Em 1924, em sua tese de doutorado, o físico francês, Louis de Broglie (1892-1987), formulou uma hipótese na qual afirmava que[1]:- Toda a matéria apresenta características tanto ondulatórias como corpusculares comportando-se de um ou outro modo dependendo do experimento específico.
Para postular esta propriedade da matéria, De Broglie se baseou na explicação do efeito fotoelétrico, que pouco antes havia sido apresentada por Albert Einstein sugerindo a natureza corpuscular da luz. Para Einstein, a energia transportada pelas ondas luminosas estava quantizada, distribuída em pequenos pacotes de energia ou quanta de luz, que mais tarde seriam denominados fótons, e cuja energia dependia da frequência da luz através da relação, onde
é a frequência da onda luminosa e
a constante de Planck. Albert Einstein propunha desta forma que, em determinados processos, as ondas eletromagnéticas se comportam como corpúsculos. De Broglie se perguntou se tal não poderia se dar de maneira inversa, ou seja, que uma partícula material (um corpúsculo) pudesse mostrar o mesmo comportamento que uma onda.
O físico francês relacionou o comprimento de onda, λ (lambda) com a quantidade de movimento da partícula, mediante a fórmula:,
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde λ é o comprimento da onda associada à partícula de massa m que se move a uma velocidade v, e h é a constante de Planck. O produtoé também o módulo do vetor
, ou quantidade de momento da partícula. Vendo-se a equação se percebe facilmente, que à medida que a massa do corpo ou sua velocidade aumenta, diminui seu comprimento de onda.
Esta hipótese se confirmou três anos depois para os elétrons, com a observação dos resultados do experimento da dupla fenda de Young na difração de elétrons em duas investigações independentes. Na Universidade de Aberdeen, George Paget Thomson passou um feixe de elétrons através de uma placa de metal delgada e observou os diferentes esquemas preditos. Nos Laboratórios Bell, Clinton Joseph Davisson e Lester Halbert Germer guiaram seu feixe através de uma rede cristalina.A equação de De Broglie pode ser aplicada a toda a matéria. Os corpos macroscópicos também têm uma onda associada mas, dado que sua massa é muito grande, o comprimento de onda resulta tão pequeno ao ponto de ser impossível perceber suas características ondulatórias.De Broglie recebeu o Prêmio Nobel de Física em 1929 por esse trabalho, o que o fez ser a primeira pessoa a receber um Prêmio Nobel sobre uma tese de doutorado. Thomson e Davisson compartilharam o Nobel de 1937 por seu trabalho experimental.Contexto histórico[editar | editar código-fonte]
Após avanços feitos por Max Planck (1858–1947) e Albert Einstein (1879–1955) na compreensão do comportamento dos elétrons e o que seria conhecido como física quântica, Niels Bohr (1885–1962) começou (entre outras coisas) tentando explicar como os elétrons se comportam. Ele veio com novas ideias fundamentais sobre os elétrons e matematicamente derivada da equação de Rydberg, uma equação que só foi descoberta por tentativa e erro. Essa equação explica as energias da luz emitida quando gás hidrogênio é comprimido e eletrificado (similarmente aos sinais de neônio, as lâmpadas de neon, mas com hidrogênio neste caso). Infelizmente, este modelo somente funcionava para a configuração do átomo de hidrogênio, mas suas ideias eram tão revolucionárias que romperiam com a clássica visão do comportamento dos elétrons e pavimentou o caminho para novas ideias no que se tornaria a física quântica e a mecânica quântica.Louis de Broglie (1892–1987) tentou expandir as ideias de Bohr, expandindo sua aplicação para além do hidrogênio. Na verdade, ele procurou uma equação que pudesse explicar as características do comprimento de onda de toda a matéria. Esta equação foi experimentalmente confirmada em 1927 quando os físicos Lester Germer e Clinton Davisson dispararam elétrons em um alvo cristalino de níquel e o padrão de difração resultante obtido concordava com os valores previstos.[2] Na equação de Broglie o comprimento de onda de um elétron é uma função da constante de Planck (6.626×10−34 joule-segundos) dividido pelo momento (não relativisticamente, sua massa multiplicada pela sua velocidade). Quando seu momento é muito grande (relativamente à constante de Planck), então o comprimento de onda de um objeto é muito pequeno. Isto no caso de objetos com energias triviais, tais como uma pessoa; dado o enorme momento de uma pessoa comparado com a muito pequena constante de Planck, o comprimento de onda de uma pessoa seria muito pequeno (na ordem de 10−35 nanômetros ou menor) a ponto de ser indetectável por qualquer ferramenta de medida. Por outro lado, partículas muitas pequenas (como os elétrons em materiais típicos diariamente) têm um momento muito baixo comparado com os objetos macroscópicos. Neste caso, o comprimento de onda de Broglie pode ser grande o suficiente para que a natureza ondulatória da partícula resulte em efeitos observáveis.O comportamento como ondas de partículas de momentos pequenos é análogo àquele da luz. Como um exemplo, microscópios eletrônicos usam elétrons, ao invés de luz, para observar objetos muito pequenos. Dado que elétrons tipicamente tem mais momento do que fótons, seu comprimento de onda de Broglie irá ser menor, resultando em melhor resolução espacial.As relações de De Broglie[editar | editar código-fonte]
Mecânica quântica[editar | editar código-fonte]
As equações de Broglie relacionam o comprimento de ondaao momento linear
, e a frequência
à energia total
, (incluindo sua energia de repouso, respectivamente, de uma partícula):[3]
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
e- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
ondeé a constante de Planck. As duas equações são também escritas como:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
e- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Utilizando as definições...é a constante de Planck reduzida (também conhecida como constante de Dirac, pronunciada "h-barra" ou "h cortado"),
é o número de onda angular, e
é a frequência angular.
Em cada par, o segundo é também referido como a relação de Planck-Einstein, dado que ela também foi proposta por Planck e Einstein.Usando resultados da relatividade especial, as equações podem ser escritas como:- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
e- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Ondeé a massa em repouso da partícula,
é a velocidade da partícula,
é o fator de Lorentz e
é a velocidade da luz no vácuo.
Relatividade especial[editar | editar código-fonte]
Usando a fórmula do momento relativístivo da relatividade especial,seguem as equações a ser escritas como[4]- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde m0 é a massa de repouso da partícula, v é a velocidade da partícula, γ é o fator de Lorentz e c é a velocidade da luz no vácuo.Veja o artigo sobre velocidade de grupo para detalhes da derivação das relações de de Broglie. A velocidade de grupo (igual à velocidade da partícula) não deve ser confundida com velocidade de fase (igual ao produto da frequência da partícula e seu comprimento de onda). No caso de um meio não dispersivo, acontecem de serem iguais, mas em outras formas acabam por ser diferentes.Em física, comprimento de onda é a distância entre valores repetidos sucessivos num padrão de onda.[1] É usualmente representado pela letra grega lambda (λ).Em uma onda senoidal, o comprimento de onda “é a distância (paralela à direção de propagação da onda) entre repetições da forma de onda". Pode, então, ser representada pela distância entre picos (máximos), vales (mínimos), ou duas vezes a distância entre nós.No gráfico ao lado, o eixo x representa a distância e o eixo y representa alguma quantidade periódica,[2] como por exemplo a pressão, no caso do som ou o campo elétrico para ondas eletromagnéticas ou a altura da água para uma onda no mar profundo. A altura no eixo y é também chamada de amplitude da onda.O comprimento de onda λ tem uma relação inversa com a frequência[3] f, a velocidade de repetição de qualquer fenômeno periódico. O comprimento de onda é igual à velocidade da onda dividida pela frequência da onda. Quando se lida com radiação electromagnética no vácuo, essa velocidade é igual à velocidade da luz 'c', para sinais (ondas) no ar, essa velocidade é a velocidade na qual a onda viaja.Essa relação é dada por: [4]- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
em que:- λ = comprimento de onda de uma onda sonora ou onda electromagnética;
- c = velocidade da luz no vácuo = 299.792,458 km/s ~ 300.000 km/s = 300.000.000 m/s
- f = frequência da onda 1/s = Hz.
A velocidade de uma onda pode portanto ser calculada com a seguinte equação:[5]- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
em que:- v = velocidade da onda.
- λ = comprimento de onda de uma onda sonora ou onda electromagnética;
- T é o período da onda.
O inverso do período, 1/T, é chamado de frequência da onda, ou frequência de onda:- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
e mede o número de ciclos (repetições) por segundo executados pela onda. É medida em hertz (ciclos/segundo).Para caracterizar uma onda, portanto, é necessário conhecer apenas duas quantidades, a velocidade e o comprimento de onda ou a frequência e a velocidade, já que a terceira quantidade pode ser determinada da equação acima, que podemos reescrever como:[6]- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Quando ondas de luz (e outras ondas electromagnéticas) entram num dado meio, o seu comprimento de onda é reduzido por um factor igual ao índice de refração n do meio, mas a frequência permanece inalterada. O comprimento de onda no meio, λ' é dado por[7]:- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
em que:- λ0 é o comprimento de onda no vácuo.
Dilatação temporal no SDCTI GRACELI -CADEAIAS DE INTERAÇÕES E DIMENS. FENOM.
sexta-feira, 23 de agosto de 2019
O Paradoxo dos Gêmeos, ou Paradoxo de Langevin, é um experimento mental envolvendo a dilatação temporal, uma das consequências da Relatividade restrita. Nele, um homem que faz uma viagem ao espaço numa nave de grande velocidade, voltará em casa mais novo que seu gêmeo que ficou em Terra, movendo-se a velocidades cotidianas.Dilatação temporal[editar | editar código-fonte]
Ver artigo principal: Dilatação do tempo
A Relatividade restrita prevê que, dado um referencial inercial S e um outro referencial inercial S' tal que S' se move com velocidade constante v em relação a S, por meio de uma Transformação de Lorentz entre referenciais, encontramos a relação entre as coordenadas x,y,z e t do sistema S e as coordenadas x',y',z' e t' do sistema S' .Usando a transformação de Lorentz para o tempo, obtemosx
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Movimento acelerado[editar | editar código-fonte]
Um grande mito é que não é possível se calcular acelerações na Relatividade Restrita, deixando a solução do paradoxo fora do escopo dessa teoria. No entanto isso não é verdade e é perfeitamente possível calcular o movimento de um corpo acelerado na Relatividade Restrita, permitindo calcular o movimento desse corpo.Vamos calcular o movimento de uma partícula relativística submetida a um 'movimento uniformemente acelerado', ou seja, a cada instante, no referencial de repouso existe uma aceleração constante na direção, escrita como
.
Primeiramente, observamos que no referencial "tangente" de repouso da partícula,Para descobrir qual o o quadrivetor no referêncial de laboratório, fazemos uma transformação de Lorentz, e portanto:Sabemos também que, e podemos então chegar a uma equação para a quadrivelocidade
Lembrando que as componentes espaciais do quadrivetor são, e portanto
Lembrando que a particula se desloca na direçãoe escolhendo a partícula em repouso em
Agora é só integrar novamente, e chegamos a- x
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Como v é obrigatoriamente menor que c, temos que, para o corpo em movimento, o tempo corre mais lentamente do que para o corpo em repouso.Enunciado[editar | editar código-fonte]
Dois gêmeos A e B idênticos, estando o irmão A em uma nave espacial na qual ele viajará a uma velocidade muito próxima de c (velocidade da luz) - enquanto o outro, B, permanece em repouso na Terra. Para B, a nave está se movendo, e por conta disso ele pode afirmar que o tempo está correndo mais lentamente para seu irmão A que está na nave.Analogamente, A vê a Terra se afastar, pelo que ele pode, da mesma forma, afirmar que o tempo corre mais lentamente para B.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Assinar: Postagens (Atom)
Assinar: Postagens (Atom)
(onde R é a constante dos gases e T é a temperatura absoluta).
Assinar: Postagens (Atom)
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário